
CIS 4004: Web Based IT (JavaScript – Part 2) Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Spring 2013

 JavaScript – Part 2

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cis4004/spr2013

CIS 4004: Web Based IT (JavaScript – Part 2) Page 2 © Dr. Mark Llewellyn

• JavaScript is a web programming language that you can use

with HTML5.

• Although many new HTML5 elements support features that

no longer require the developer to employ JavaScript, it can

used to access certain parts of your web pages written in

HTML5 and do other things that simply cannot be done

without JavaScript.

• HTML5 defines your web pages content. CSS defines the

presentation of your web pages. JavaScript defines special

behavior for the page.

JavaScript – Part 2

CIS 4004: Web Based IT (JavaScript – Part 2) Page 3 © Dr. Mark Llewellyn

• JavaScript has nothing to do with Java. They are two

completely different and unrelated languages.

• JavaScript is considered a scripting language because it is

interpreted by the browser at runtime (when the web page is

actually opened) rather than compiled and stored on your

computer.

• Slightly different versions of JavaScript are present and lead

to different implementations of the language on different

browsers. Because JavaScript meets an ECMAScript standard

(ECMA-262), these differences are slight, and we’ll discuss

only aspects of JavaScript that you can use with HTML5.

JavaScript – Part 2

CIS 4004: Web Based IT (JavaScript – Part 2) Page 4 © Dr. Mark Llewellyn

• JavaScript has quite a range of possibilities, and its use has

exploded in recent years.

• This explosion, in part, is due to JavaScript libraries like

jQuery, MooTools, and YUI, that have made it easier to add

both simple interactivity and sophisticated behavior to pages,

while helping them to behave more consistently across various

browsers.

• Of there, jQuery enjoys the most widespread use, largely

because beginners find it easier to learn, it has good online

documentation, and it has a very large community behind it.

• We’ll look at jQuery in more detail later.

JavaScript – Part 2

CIS 4004: Web Based IT (JavaScript – Part 2) Page 5 © Dr. Mark Llewellyn

• Browser vendors have spent considerable resources making

their browsers process JavaScript significantly faster than their

versions of even just a few years ago.

• JavaScript also works in tablet and modern mobile browsers,

though for performance reasons, you’ll want to be smart about

how much you load in pages for these devices (much more

later).

• There are two primary kinds of scripts – those that you load

from an external file (in text-only format) and those that are

embedded in your web page. It’s the same concept as

external and embedded style sheets.

JavaScript – Part 2

CIS 4004: Web Based IT (JavaScript – Part 2) Page 6 © Dr. Mark Llewellyn

• As with CSS, its generally better to load scripts from an

external file than to embed them in your markup.

• You’ll reap some of the same benefits, in that a single

JavaScript tile can be loaded by any number of pages that

need it. You can edit one script rather than updating similar

scripts in a number of individual pages of markup.

• Whether loading an external or an embedded script, the

script element is used. The src attribute of the script

element references the script’s URL.

• First, let’s look at how a browser handles scripts.

JavaScript – Part 2

CIS 4004: Web Based IT (JavaScript – Part 2) Page 7 © Dr. Mark Llewellyn

• As a page loads, by default the browser downloads (for

external scripts), parses, and executes each script in the

order in which it appears in the markup.

• As its processing, the browser neither downloads nor

renders any content that appears after the script element

– not even text. This is known as blocking behavior.

• This is true for both embedded and external scripts. As you

can imagine, it can really impact the rendering speed of

your page, depending on the size of the script and what

actions it performs.

How A Browser Handles Scripts

CIS 4004: Web Based IT (JavaScript – Part 2) Page 8 © Dr. Mark Llewellyn

• Most browsers do this because you JavaScript may include

code on which another script relies, code that generates

content immediately, or code that otherwise alters your

page.

• Browsers need to take all of that into account before they

finish rendering your page.

• So how do you avoid this? The easiest technique to make

your JavaScript non-blocking is to put all script elements

at the end of your markup, right before the </body> end

tag.

How A Browser Handles Scripts

CIS 4004: Web Based IT (JavaScript – Part 2) Page 9 © Dr. Mark Llewellyn

• If you ever spent any time viewing source code on various

web sites, you’ve no doubt seen scripts loaded in the head

element (see next page for an example).

• Outside of the occasional instance where it might be

necessary, it is considered an outdated practice to do this

and you should avoid it whenever possible. (One case

where it is necessary is loading the HTML5 shiv which is

a collection of JavaScript functions that allow outdated

browsers to support some of the new HTML5 elements –

more later).

• If you do load scripts from the head, they should be placed

after all link elements that load CSS files.

How A Browser Handles Scripts

CIS 4004: Web Based IT (JavaScript – Part 2) Page 10 © Dr. Mark Llewellyn

script elements inside the head element

CIS 4004: Web Based IT (JavaScript – Part 2) Page 11 © Dr. Mark Llewellyn

• Another way to speed up script loading is to combine all

your JavaScript into a single file, or as few as possible, and

then minify the code.

• Typically, minified code contains no line breaks, comments,

or any extra whitespace. This sets it apart from un-minified

code. Imagine writing code in one long line without ever

pressing return or enter!

How A Browser Handles Scripts

If you’d like to try minifying your JavaScripts you can use the following:

Google Closure Compiler:

 download & documentation at: http://code.goggle.com/closure/compiler

 online version at: http://closure-compiler/appspot.com

YUI Compressor:

 download & documentation at: http://developer.yahoo.com/yui/compressor

 (unofficial) online version at: http://refresh-sf-com/yui

http://code.goggle.com/closure/compiler
http://closure-compiler/appspot.com
http://closure-compiler/appspot.com
http://closure-compiler/appspot.com
http://developer.yahoo.com/yui/compressor
http://refresh-sf-com/yui
http://refresh-sf-com/yui
http://refresh-sf-com/yui
http://refresh-sf-com/yui
http://refresh-sf-com/yui

CIS 4004: Web Based IT (JavaScript – Part 2) Page 12 © Dr. Mark Llewellyn

Screen shot illustrating Google Closure Compiler

and output removing all whitespace from the script.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 13 © Dr. Mark Llewellyn

• Either of these tools will reduce the file size of the script,

but results will vary from script to script.

• Generally, it is faster for a browser to load one file than two

(or more), even if the single file is larger than the combined

size of the individual files (unless the one file is much

larger).

• Browsers that do not understand JavaScript (these are rare

nowadays) or ones that have it disabled by the user will

ignore your JavaScript file. So be sure that your page

doesn’t rely on JavaScript to provide users access to its

content and basic experience.

How A Browser Handles Scripts

CIS 4004: Web Based IT (JavaScript – Part 2) Page 14 © Dr. Mark Llewellyn

• Although it is not the preferred way of including a script in

your markup, the first example, on the next page, illustrates

embedding a very simple JavaScript script into the body of

a page.

• Note, as would be the preferred practice that the script

appears just before the </body> tag.

• This simple script just pops up an alert message for the user

to read.

• Notice the sequence of events as shown on page 16 when

the page renders.

Adding An Embedded Script

CIS 4004: Web Based IT (JavaScript – Part 2) Page 15 © Dr. Mark Llewellyn

CIS 4004: Web Based IT (JavaScript – Part 2) Page 16 © Dr. Mark Llewellyn

Initial screen shot. Notice that the background is

not yet styled and none of the text from the body of

the document has rendered, but the script has

executed.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 17 © Dr. Mark Llewellyn

After the visitor has clicked the ok button on the

pop-up window, the remainder of the document is

rendered, the styles are applied, and the pop-up

window has disappeared.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 18 © Dr. Mark Llewellyn

• Now look at a second version of the original markup.

• This markup contains two different scripts.

• Notice again in the following sequence of screen shots that

both of the scripts are executed before the body of the

document is rendered or the styles applied to the document.

Adding An Embedded Script

CIS 4004: Web Based IT (JavaScript – Part 2) Page 19 © Dr. Mark Llewellyn

Initial screen shot. Notice that the background is

not yet styled and none of the text from the body of

the document has rendered, but the first script has

executed.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 20 © Dr. Mark Llewellyn

Second screen shot. The visitor clicked the ok button on

the first pop-up window and now the second script has

executed. Notice that the background is still not styled

and none of the text from the body of the document has

rendered, now the second script has executed.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 21 © Dr. Mark Llewellyn

After the visitor has clicked the ok button on the

pop-up window for the second script, the remainder

of the document is rendered, the styles are applied,

and the final pop-up window has disappeared.

CIS 4004: Web Based IT (JavaScript – Part 2) Page 22 © Dr. Mark Llewellyn

• The next example uses the exact same script as the first

example. The difference is that the script is external to the

markup.

• In this case, I’ve created a folder named scripts and all

of the external scripts will reside in this folder. The script

file that contains the same script as the first example is

named basicscript1.js.

• JavaScript files should use a .js file extension.

• Notice that the behavior of the page is exactly the same as

with the first example.

Adding An Embedded Script

CIS 4004: Web Based IT (JavaScript – Part 2) Page 23 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 24 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 25 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 26 © Dr. Mark Llewellyn

• The previous two examples illustrate very basic use of

JavaScript.

• Notice too, that in both of those examples, the execution of

the script was automatic…the visitor didn’t do anything to

cause the script to execute (other than visiting the page).

• The real power of JavaScript in HTML5 can be better seen

when the script waits until the visitor does something to

launch the script. For example, if the visitor clicks

something, you can launch any script you want.

• Do to this you use an HTML5 event handler.

How To Really Use JavaScript

CIS 4004: Web Based IT (JavaScript – Part 2) Page 27 © Dr. Mark Llewellyn

• An HTML5 event handler allows the page to detect that

some kind of action (an event) as occurred and has a built-in

function that recognizes the event.

• HTML5 recognizes a lot of different events. Some of the

events occur automatically – such as when the page loads.

Other events occur when visitors do something with the

mouse or keyboard.

• The table on the next page illustrates some of the more

common event handlers in HTML5.

How To Really Use JavaScript

CIS 4004: Web Based IT (JavaScript – Part 2) Page 28 © Dr. Mark Llewellyn

How To Really Use JavaScript

onchange onclick ondbleclick ondrag ondragend

ondrageneter ondragleave ondrageover ondragstart ondrop

onkeydown onkeypress onkeyup onmousedown onmousemove

onmouseout onmouseover onmouseup onmousewheel onpause

onplay onplaying onprogress onloadstart onload

A sample of HTML5 event handlers

CIS 4004: Web Based IT (JavaScript – Part 2) Page 29 © Dr. Mark Llewellyn

• The general format of all events linked to elements is:

 <element onEvent = “javascriptFunction()”>

• An example might be:

 <body onLoad = “announceSomething()”>

• The example above would use the body element with an

onLoad event handler to fire a JavaScript function named

announceSomething().

How To Really Use JavaScript

CIS 4004: Web Based IT (JavaScript – Part 2) Page 30 © Dr. Mark Llewellyn

• To see how event handlers work with JavaScript, look at the

example markup on the following page.

• This example has three different event handlers and three

different JavaScript functions that are launched by the

events.

• The first one sends out an alert when the page loads, the

second fires when the top link is clicked, and the third event

launches an alert when the second link is double-clicked.

• In general, the JavaScript function can be whatever you want

there to be, which allows you to interact far more with the

visitor. You can provide instructions, options, cautions, etc..

Detecting Events

CIS 4004: Web Based IT (JavaScript – Part 2) Page 31 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 32 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 33 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 34 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 35 © Dr. Mark Llewellyn

• The previous example doesn’t use anything that is new to

HTML5. I used it in this example for the simple reason that

when the visitor moves the mouse over the anchor elements ,

the cursor changes shape so that the visitor know that they’ve

moved the cursor over linked text.

• In HTML5 you can set up an event handler in any element.

• The following example illustrates events in <p>,

<header>, and <article> elements.

Detecting Events

CIS 4004: Web Based IT (JavaScript – Part 2) Page 36 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 37 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 38 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 39 © Dr. Mark Llewellyn

This section

not complete

CIS 4004: Web Based IT (JavaScript – Part 2) Page 40 © Dr. Mark Llewellyn

This section

not complete

This alert pops

up immediately

after the one on

the previous

slide. Why?

CIS 4004: Web Based IT (JavaScript – Part 2) Page 41 © Dr. Mark Llewellyn

• If you examine the previous example’s markup more

carefully, you’ll notice that some events are embedded inside

other elements that also have event handlers.

• For instance, all the elements are inside an <article> element.

• As you can see from the screen shots of the rendering, what

happened when the visitor clicked on the paragraph element

that had an event handler?

• Did the visitor see a reaction from the innermost or the

outermost event? Look at the previous two slides again.

Detecting Events

CIS 4004: Web Based IT (JavaScript – Part 2) Page 42 © Dr. Mark Llewellyn

 • As soon as the visitor clicked on the line “Click This Paragraph”

the event is reported (they clicked in the <p> container) in the

alert shown on page 39.

• When the visitor clicks the OK button in the JavaScript pop-up,

the second alert appears (page 40) letting them know that they

had clicked in the <article> container as well.

• One way of looking at the events is bubbling up, beginning in the

lowest level in the hierarchy (nesting of elements) and then

bubbling up to the topmost level of the hierarchy.

• In this example, the hierarchy, from lowest level to highest, is

represented by <p>, (<section>, <header>),

<article>, <body>

Detecting Events

CIS 4004: Web Based IT (JavaScript – Part 2) Page 43 © Dr. Mark Llewellyn

• The Document Object Model (DOM) for HTML5 represents

a hierarchy tree.

• At the root of every web page or document is the <html>

element, and the rest of the elements in the page are a branch

somewhere along the tree.

• JavaScript uses the DOM for addressing and manipulation a

web page beyond what you can do with HTML5 alone.

• The entire DOM tree is a representation of the document that

resides in your computer’s memory.

• We’ll explore the DOM in more detail in the next section of

notes.

The Document Object Model

